Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 908
Filtrar
1.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 42(4): 202-204, Abr. 2024. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-232175

RESUMO

Introducción: El desarrollo e investigación de nuevas tecnologías para la identificación de microorganismos, ha permitido la identificación de microorganismos hasta ahora desconocidos. Auritidibacter ignavus es un bacilo grampositivo recientemente descrito, posiblemente asociado con la otitis, aunque su papel como patógeno ótico actualmente es controvertido.Métodos: Presentamos 2 casos de otitis recurrente en pacientes pediátricos en los que se aisló A. ignavus, y revisamos los casos previos descritos en la literatura. Resultados: Todos los aislamientos fueron identificados como A. ignavus por métodos proteómicos y genómicos. En ambos pacientes se resolvieron los síntomas clínicos. Conclusión: A. ignavus se recuperó de las secreciones del oído de los pacientes pediátricos con problemas crónicos del oído. Todos los casos descritos previamente en la literatura eran adultos. Es necesaria más evidencia para asociar A. ignavus con la enfermedad ótica, ya que los datos sobre esta especie aún son escasos.(AU)


Introduction: The development and research of new technologies for identifying microorganisms, has allowed the identification of hitherto unknown bacteria. Auritidibacter ignavus is a newly described Gram-positive rod possibly associated with otitis, although its role as an etiologic agent in otitis is currently controversial. Methods: We report two cases of recurrent otitis in paediatric patients in which A. ignavus was isolated and review the previous cases reported in the literature. Results: All the isolates were identified as A. ignavus by proteomic and genomic methods. Both patients recovered from their symptoms. Conclusion: A. ignavus was recovered from ear discharges of paedriatic patients with chronic ear problems. All the cases previously reported in the literature were adults. More evidence is needed for the association between A. ignavus and otitis, since data regarding this species are still scarce.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Otite , Espectrometria de Massas , Micrococcaceae , Proteômica
2.
J Environ Sci (China) ; 142: 182-192, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527883

RESUMO

The degradation of tilmicosin (TLM), a semi-synthetic 16-membered macrolide antibiotic, has been receiving increasing attention. Conventionally, there are three tilmicosin degradation methods, and among them microbial degradation is considered the best due to its high efficiency, eco-friendliness, and low cost. Coincidently, we found a new strain, Glutamicibacter nicotianae sp. AT6, capable of degrading high-concentration TLM at 100 mg/L with a 97% removal efficiency. The role of tryptone was as well investigated, and the results revealed that the loading of tryptone had a significant influence on TLM removals. The toxicity assessment indicated that strain AT6 could efficiently convert TLM into less-toxic substances. Based on the identified intermediates, the degradation of TLM by AT6 processing through two distinct pathways was then proposed.


Assuntos
Micrococcaceae , Tilosina , Tilosina/análogos & derivados , Águas Residuárias , Tilosina/toxicidade , Antibacterianos/metabolismo , Biodegradação Ambiental
3.
Arch Microbiol ; 206(4): 165, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485793

RESUMO

This article reports the results of quantitative intra- and intergeneric taxonomic relationships among Micrococcaceae strains and a novel endophytic bacterium (SG) isolated from a suspension culture of Arabidopsis thaliana (L.) Heynh in our laboratory. The known strain Rothia sp. ND6WE1A was used as a reference one for SG. Whole-genome sequencing and phylogenetic analysis were based on the 16S rRNA test. Quantitative analysis for the nucleotide identity (ANI) and calculation of evolutionary distances were based on the identified amino acids (AAI) test indicating the generic assignment of the reference strain within and between the identified monophyletic groups of Micrococcaceae. The amino acid data structure of Rothia sp. ND6WE1A was compared against the UniProt database (250 million records) of close lineage of Micrococcaceae, including other Rothia spp. These data presented unique and evolutionary amino acid alignments, eventually expected in the new SG isolate as well. The metagenomic entries of the respective genome and proteome, characterized at the genus and species levels, could be considered for evolutionary taxonomic reclassification of the isolated and the reference strain (SG + Rothia sp. ND6WE1A). Therefore, our results warrant further investigations on the isolated SG strain.


Assuntos
Micrococcaceae , Micrococcaceae/genética , Filogenia , Ácidos Graxos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Aminoácidos/metabolismo , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
4.
Cell Biochem Funct ; 42(2): e3965, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457283

RESUMO

A highly efficient chlorobenzene-degrading strain was isolated from the sludge of a sewage treatment plant associated with a pharmaceutical company. The strain exhibited a similarity of over 99.9% with multiple strains of Paenarthrobacter ureafaciens. Therefore, the strain was suggested to be P. ureafaciens LY. This novel strain exhibited a broad spectrum of pollutant degradation capabilities, effectively degrading chlorobenzene and other organic pollutants, such as 1, 2, 4-trichlorobenzene, phenol, and xylene. Moreover, P. ureafaciens LY co-metabolized mixtures of chlorobenzene with 1, 2, 4-trichlorobenzene or phenol. Evaluation of its degradation efficiency showed that it achieved an impressive degradation rate of 94.78% for chlorobenzene within 8 h. The Haldane-Andrews model was used to describe the growth of P. ureafaciens LY under specific pollutants and its concentrations, revealing a maximum specific growth rate (µmax ) of 0.33 h-1 . The isolation and characterization of P. ureafaciens LY, along with its ability to degrade chlorobenzene, provides valuable insights for the development of efficient and eco-friendly approaches to mitigate chlorobenzene contamination. Additionally, investigation of the degradation performance of the strain in the presence of other pollutants offers important information for understanding the complexities of co-metabolism in mixed-pollutant environments.


Assuntos
Clorobenzenos , Poluentes Ambientais , Micrococcaceae , Biodegradação Ambiental , Clorobenzenos/metabolismo , Fenol , Preparações Farmacêuticas
6.
Microbiome ; 12(1): 43, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424602

RESUMO

BACKGROUND: Bioaugmentation has the potential to enhance the ability of ecological technology to treat sulfonamide-containing wastewater, but the low viability of the exogenous degraders limits their practical application. Understanding the mechanism is important to enhance and optimize performance of the bioaugmentation, which requires a multifaceted analysis of the microbial communities. Here, DNA-stable isotope probing (DNA-SIP) and metagenomic analysis were conducted to decipher the bioaugmentation mechanisms in stabilization pond sediment microcosms inoculated with sulfamethoxazole (SMX)-degrading bacteria (Pseudomonas sp. M2 or Paenarthrobacter sp. R1). RESULTS: The bioaugmentation with both strains M2 and R1, especially strain R1, significantly improved the biodegradation rate of SMX, and its biodegradation capacity was sustainable within a certain cycle (subjected to three repeated SMX additions). The removal strategy using exogenous degrading bacteria also significantly abated the accumulation and transmission risk of antibiotic resistance genes (ARGs). Strain M2 inoculation significantly lowered bacterial diversity and altered the sediment bacterial community, while strain R1 inoculation had a slight effect on the bacterial community and was closely associated with indigenous microorganisms. Paenarthrobacter was identified as the primary SMX-assimilating bacteria in both bioaugmentation systems based on DNA-SIP analysis. Combining genomic information with pure culture evidence, strain R1 enhanced SMX removal by directly participating in SMX degradation, while strain M2 did it by both participating in SMX degradation and stimulating SMX-degrading activity of indigenous microorganisms (Paenarthrobacter) in the community. CONCLUSIONS: Our findings demonstrate that bioaugmentation using SMX-degrading bacteria was a feasible strategy for SMX clean-up in terms of the degradation efficiency of SMX, the risk of ARG transmission, as well as the impact on the bacterial community, and the advantage of bioaugmentation with Paenarthrobacter sp. R1 was also highlighted. Video Abstract.


Assuntos
Micrococcaceae , Poluentes Químicos da Água , Sulfametoxazol/metabolismo , Poluentes Químicos da Água/metabolismo , Águas Residuárias , Antibacterianos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Micrococcaceae/genética , Biodegradação Ambiental , DNA
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366247

RESUMO

The widespread occurrence of sulfonamides raises significant concerns about the evolution and spread of antibiotic resistance genes. Biodegradation represents not only a resistance mechanism but also a clean-up strategy. Meanwhile, dynamic and diverse environments could influence the cellular function of individual sulfonamide-degrading strains. Here, we present Paenarthrobacter from different origins that demonstrated diverse growth patterns and sulfonamide-degrading abilities. Generally, the degradation performance was largely associated with the number of sadA gene copies and also relied on its genotype. Based on the survey of sad genes in the public database, an independent mobilization of transposon-borne genes between chromosome and plasmid was observed. Insertions of multiple sadA genes could greatly enhance sulfonamide-degrading performance. Moreover, the sad gene cluster and sadA transposable element showed phylogenetic conservation currently, being identified only in two genera of Paenarthrobacter (Micrococcaceae) and Microbacterium (Microbacteriaceae). Meanwhile, Paenarthrobacter exhibited a high capacity for genome editing to adapt to the specific environmental niche, opening up new opportunities for bioremediation applications.


Assuntos
Micrococcaceae , Sulfonamidas , Sulfonamidas/metabolismo , Biodegradação Ambiental , Filogenia , Sulfanilamida , Micrococcaceae/genética , Micrococcaceae/metabolismo
8.
Bull Exp Biol Med ; 176(3): 342-346, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38342813

RESUMO

Dormant forms of causative agents of healthcare-acquired infections Moraxella catarrhalis and Kocuria rhizophila have been obtained. Dormant forms cells retained viability during long-term storage (≈107 CFU/ml after 2 months) under provocative conditions (lack of nutrient sources; temperature 20°C, oxygen access) were characterized by heat resistance, and acquired special ultrastructural organization typical of dormant forms (compacted nucleoid, thickened cell wall). They were also capable of forming alternative phenotypes (dominant and small colony variants) in a new cycle of germination in a fresh medium. These results demonstrate that the dormant forms can be responsible both for survival in the environment and persistence in the host organism.


Assuntos
Micrococcaceae , Moraxella catarrhalis , Moraxella catarrhalis/genética , Moraxella catarrhalis/metabolismo , Fenótipo
9.
Chemosphere ; 352: 141359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309604

RESUMO

Dibutyl phthalate (DBP) is a widely used plasticizer to make plastic flexible and long-lasting. It is easily accessible in a broad spectrum of environments as a result of the rising level of plastic pollution. This compound is considered a top-priority toxicant and persistent organic pollutant by international environmental agencies for its endocrine disruptive and carcinogenic propensities. To mitigate the DBP in the soil, one DBP-degrading bacterial strain was isolated from a plastic-polluted landfill and identified as Paenarthrobacter ureafaciens PB10 by 16S rRNA gene sequence-based homology. The strain was found to develop a distinct transparent halo zone around grown colonies on an agar plate supplemented with DBP. The addition of yeast extract (100 mg/L) as a nutrient source accelerated cell biomass production and DBP degradation rate; however, the presence of glucose suppressed DBP degradation by the PB10 strain without affecting its ability to proliferate. The strain PB10 was efficient in eliminating DBP under various pH conditions (5.0-8.0). Maximum cell growth and degradation of 99.49% at 300 mg/L DBP were achieved in 72 h at the optimized mineral salt medium (MS) conditions of pH 7.0 and 32 °C. Despite that, when the concentration of DBP rose to 3000 mg/L, the DBP depletion rate was measured at 79.34% in 72 h. Some novel intermediate metabolites, like myristic acid, hexadecanoic acid, stearic acid, and the methyl derivative of 4-hydroxyphenyl acetate, along with monobutyl phthalate and phthalic acid, were detected in the downstream degradation process of DBP through GC-MS profiling. Furthermore, in synchronization with native soil microbes, this PB10 strain successfully removed a notable amount of DBP (up to 54.11%) from contaminated soil under microcosm study after 10 d. Thus, PB10 has effective DBP removal ability and is considered a potential candidate for bioremediation in DBP-contaminated sites.


Assuntos
Dibutilftalato , Micrococcaceae , Ácidos Ftálicos , Dibutilftalato/metabolismo , Biodegradação Ambiental , Ácido Mirístico , RNA Ribossômico 16S/genética , Ácidos Ftálicos/metabolismo , Solo
10.
Enferm Infecc Microbiol Clin (Engl Ed) ; 42(4): 202-204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262875

RESUMO

INTRODUCTION: The development and research of new technologies for identifying microorganisms, has allowed the identification of hitherto unknown bacteria. Auritidibacter ignavus is a newly described Gram-positive rod possibly associated with otitis, although its role as an etiologic agent in otitis is currently controversial. METHODS: We report two cases of recurrent otitis in paediatric patients in which A. ignavus was isolated and review the previous cases reported in the literature. RESULTS: All the isolates were identified as A. ignavus by proteomic and genomic methods. Both patients recovered from their symptoms. CONCLUSION: A. ignavus was recovered from ear discharges of paedriatic patients with chronic ear problems. All the cases previously reported in the literature were adults. More evidence is needed for the association between A. ignavus and otitis, since data regarding this species are still scarce.


Assuntos
Micrococcaceae , Otite , Adulto , Humanos , Criança , Alta do Paciente , Proteômica
11.
Curr Microbiol ; 81(1): 53, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172411

RESUMO

Nesterenkonia sandarakina VSA9 pigmented bacteria isolated from Sargassum is being reported to produce polyhydroxyalkanoates (PHA) deduced through detecting the presence of pha C gene using the molecular method. The PHA synthase gene was of type I which has been concluded from the phylogenetic tree and multiple sequence analysis. The amino acid analysis of pha C gene confirms the involvement of the lipase box having a sequence of G-Y-C-I-G-G with cysteine as the active center of the PHA synthase. Homology modeling predicted the 3D protein structure which is similar to the PHA synthase of Chromobacterium sp. USM2. The solvent extract of N. sandarakina VSA9 showed the presence of Carotenoid compound with maximum wavelength at 475 nm. The study's findings could have far-reaching implications, contributing to advancements in the biotechnology, industrial processes, and sustainable practices. The simultaneous production of carotenoids and PHAs by N. sandarakina VSA9 presents exciting opportunities for the development of innovative and environmentally friendly applications.


Assuntos
Micrococcaceae , Poli-Hidroxialcanoatos , Filogenia , Micrococcaceae/metabolismo , Bactérias/genética , Bactérias/metabolismo , Aciltransferases/metabolismo
12.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255919

RESUMO

4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the ß-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently.


Assuntos
Butiratos , Catecóis , Micrococcaceae , Parabenos
13.
Prep Biochem Biotechnol ; 54(2): 175-183, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37184434

RESUMO

Biofilms are the significant causes of 80% of chronic infections in the oral cavity, urinary tract, biliary tube, lungs, gastrointestinal tract, and so on to the general public. Treatment of pathogenic biofilm using bacterial exopolysaccharides (EPS) is an effective and promising strategy. In the present work, a marine bacterium was isolated, studied for exopolysaccharide production, and tested for its antibiofilm activity. Approximately 1.31 ± 0.07 g/L of a purified extracellular polysaccharide was produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30. The hydrolyzed EPS contains multiple monosaccharides such as rhamnose, fructose, glucose, and galactose. The EPS demonstrated potential antibiofilm activity on four tested pathogens in a concentration-dependent mode. The antibiofilm activity of the purified EPS was studied by crystal violet assay and fluorescence staining method. Comparative inhibition results obtained for the tested strains are 93.25% ± 5.25 and 88.56% ± 2.25 for K. pneumoniae; 92.65% ± 7.6 and 98.33% ± 0.85 for P. aeruginosa; 90.36% ± 6.3 and 52.08% ± 7.74 for S. typhi; 84.62% ± 5.6 and 77.90% ± 5.90 for S. dysenteriae. The results of the present work demonstrated the antibiofilm potential of EPS, which could be helpful in the invention of novel curative approaches in battling bacterial biofilm-related medical complications.


Assuntos
Antibacterianos , Micrococcaceae , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Antibacterianos/farmacologia , Bactérias , Biofilmes , Pseudomonas aeruginosa
14.
Biodegradation ; 35(1): 87-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37395851

RESUMO

Di-n-butyl phthalate (DBP) is widely used as plasticizer that has potential carcinogenic, teratogenic, and endocrine effects. In the present study, an efficient DBP-degrading bacterial strain 0426 was isolated and identified as a Glutamicibacter sp. strain 0426. It can utilize DBP as the sole source of carbon and energy and completely degraded 300 mg/L of DBP within 12 h. The optimal conditions (pH 6.9 and 31.7 °C) for DBP degradation were determined by response surface methodology and DBP degradation well fitted with the first-order kinetics. Bioaugmentation of contaminated soil with strain 0426 enhanced DBP (1 mg/g soil) degradation, indicating the application potential of strain 0426 for environment DBP removal. Strain 0426 harbors a distinctive DBP hydrolysis mechanism with two parallel benzoate metabolic pathways, which may account for the remarkable performance of DBP degradation. Sequences alignment has shown that an alpha/beta fold hydrolase (WP_083586847.1) contained a conserved catalytic triad and pentapeptide motif (GX1SX2G), of which function is similar to phthalic acid ester (PAEs) hydrolases and lipases that can efficiently catalyze hydrolysis of water-insoluble substrates. Furthermore, phthalic acid was converted to benzoate by decarboxylation, which entered into two different pathways: one is the protocatechuic acid pathway under the role of pca cluster, and the other is the catechol pathway. This study demonstrates a novel DBP degradation pathway, which broadens our understanding of the mechanisms of PAE biodegradation.


Assuntos
Micrococcaceae , Ácidos Ftálicos , Dibutilftalato/metabolismo , Ácidos Ftálicos/metabolismo , Biodegradação Ambiental , Micrococcaceae/metabolismo , Solo , Benzoatos
15.
Emerg Infect Dis ; 30(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146955

RESUMO

We describe detection of the previously rarely reported gram-positive bacterium Auritidibacter ignavus in 3 cases of chronic ear infections in Germany. In all 3 cases, the patients had refractory otorrhea. Although their additional symptoms varied, all patients had an ear canal stenosis and A. ignavus detected in microbiologic swab specimens. A correct identification of A. ignavus in the clinical microbiology laboratory is hampered by the inability to identify it by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Also, the bacterium might easily be overlooked because of its morphologic similarity to bacterial species of the resident skin flora. We conclude that a high index of suspicion is warranted to identify A. ignavus and that it should be particularly considered in patients with chronic external otitis who do not respond clinically to quinolone ear drop therapy.


Assuntos
Micrococcaceae , Otite Externa , Humanos , Bactérias , Otite Externa/diagnóstico , Otite Externa/tratamento farmacológico , Otite Externa/microbiologia , Meato Acústico Externo
17.
J Microorg Control ; 28(3): 123-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866894

RESUMO

Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.


Assuntos
Actinobacteria , Micrococcaceae , Solanum lycopersicum , Sementes
18.
Front Cell Infect Microbiol ; 13: 1227581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900322

RESUMO

Background: Lung infection is a global health problem associated with high morbidity and mortality and increasing rates of hospitalization. The correlation between pulmonary microecology and infection severity remains unclear. Therefore, the purpose of this study was to investigate the differences in lung microecology and potential biomarkers in patients with mild and severe pulmonary infection. Method: Patients with pulmonary infection or suspected infection were divided into the mild group (140 cases) and the severe group (80 cases) according to pneomonia severity index (PSI) scores. Here, we used metagenomic next-generation sequencing (mNGS) to detect DNA mainly from bronchoalveolar lavage fluid (BALF) collected from patients to analyze changes in the lung microbiome of patients with different disease severity. Result: We used the mNGS to analyze the pulmonary microecological composition in patients with pulmonary infection. The results of alpha diversity and beta diversity analysis showed that the microbial composition between mild and severe groups was similar on the whole. The dominant bacteria were Acinetobacter, Bacillus, Mycobacterium, Staphylococcus, and Prevotella, among others. Linear discriminant analysis effect size (LEfSe) results showed that there were significant differences in virus composition between the mild and severe patients, especially Simplexvirus and Cytomegalovirus, which were prominent in the severe group. The random forest model screened 14 kinds of pulmonary infection-related pathogens including Corynebacterium, Mycobacterium, Streptococcus, Klebsiella, and Acinetobacter. In addition, it was found that Rothia was negatively correlated with Acinetobacter, Mycobacterium, Bacillus, Enterococcus, and Klebsiella in the mild group through co-occurrence network, while no significant correlation was found in the severe group. Conclusion: Here, we describe the composition and diversity of the pulmonary microbiome in patients with pulmonary infection. A significant increase in viral replication was found in the severe group, as well as a significant difference in microbial interactions between patients with mild and severe lung infections, particularly the association between the common pathogenic bacteria and Rothia. This suggests that both pathogen co-viral infection and microbial interactions may influence the course of disease. Of course, more research is needed to further explore the specific mechanisms by which microbial interactions influence disease severity.


Assuntos
Acinetobacter , Bacillus , Coinfecção , Fabaceae , Microbiota , Micrococcaceae , Pneumonia , Humanos , Microbiota/genética , Líquido da Lavagem Broncoalveolar , Metagenoma , Sequenciamento de Nucleotídeos em Larga Escala , Klebsiella , Pulmão , Sensibilidade e Especificidade
19.
J Wildl Dis ; 59(4): 545-556, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791744

RESUMO

Improving rapid detection methods for pathogens is important for research as we collectively aim to improve the health of ecosystems globally. In the northern hemisphere, the success of salmon (Oncorhynchus spp.) populations is vitally important to the larger marine, aquatic, and terrestrial ecosystems they inhabit. This has led to managers cultivating salmon in hatcheries and aquaculture to bolster their populations, but young salmon face many challenges, including diseases such as bacterial kidney disease (BKD). Early detection of the BKD causative agent, Renibacterium salmoninarum, is useful for managers to avoid outbreaks in hatcheries and aquaculture stocks to enable rapid treatment with targeted antibiotics. Isothermal amplification and CRIPSR-Cas12a systems may enable sensitive, relatively rapid, detection of target DNA molecules from environmental samples compared to quantitative PCR (qPCR) and culture methods. We used these technologies to develop a sensitive and specific rapid assay to detect R. salmoninarum from water samples using isothermal recombinase polymerase amplification (RPA) and an AsCas12a RNA-guided nuclease detection. The assay was specific to R. salmoninarum (0/10 co-occurring or closely related bacteria detected) and sensitive to 0.0128 pg/µL of DNA (approximately 20-40 copies/µL) within 10 min of Cas activity. This assay successfully detected R. salmoninarum environmental DNA in 14/20 water samples from hatcheries with known quantification for the pathogen via previous qPCR (70% of qPCR-positive samples). The RPA-CRISPR/AsCas12a assay had a limit of detection (LOD) of >10 copies/µL in the hatchery water samples and stochastic detection below 10 copies/µL, similar to but slightly higher than the qPCR assay. This LOD enables 37 C isothermal detection, potentially in the field, of biologically relevant levels of R. salmoninarum in water. Further research is needed to develop easy-to-use, cost-effective, sensitive RPA/CRISPR-AsCas12a assays for rapidly detecting low concentrations of wildlife pathogens in environmental samples.


Assuntos
DNA Ambiental , Doenças dos Peixes , Nefropatias , Micrococcaceae , Animais , Animais Selvagens , Sistemas CRISPR-Cas , Ecossistema , Micrococcaceae/genética , Nefropatias/microbiologia , Nefropatias/veterinária , Salmão/genética , Salmão/microbiologia , Água , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia
20.
Int J Biol Macromol ; 253(Pt 1): 126717, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673153

RESUMO

Microbial exopolysaccharides (EPSs) can promote plants growth and protect them against various abiotic stresses, but the role of actinobacteria-produced EPSs in plant growth promoting is still less known. Here, we aim to explore the effect of EPSs from an endophyte Glutamicibacter halophytocota KLBMP 5180 on tomato seeds germination and seedlings growth under salt stress. Our study revealed that 2.0 g/L EPSs resulted in increased seed germination rate by 23.5 % and 11.0 %, respectively, under 0 and 200 mM NaCl stress conditions. Further pot experiment demonstrated that EPSs significantly promoted seedlings growth under salt stress, with increased height, root length and fibrous roots number. Plant physiological traits revealed that EPSs increased chlorophyll content, enhanced the activity of antioxidant enzymes, soluble sugar, and K+ concentration in seedlings; malondialdehyde and Na+ contents were reduced. Additionally, auxin, abscisic acid, jasmonic acid, and salicylic acid were accumulated significantly in seedlings after EPSs treatment. Furthermore, we identified 1233 differentially expressed genes, and they were significantly enriched in phytohormone signal transmission, phenylpropanoid biosynthesis, and protein processing in endogenous reticulum pathways, etc. Our results suggest that KLBMP 5180-produced EPSs effectively ameliorated NaCl stress in tomato plants by triggering complex regulation mechanism, and showed application potentiality in agriculture.


Assuntos
Micrococcaceae , Solanum lycopersicum , Cloreto de Sódio/farmacologia , Estresse Salino , Tolerância ao Sal , Plântula , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...